Road Capacity with a Steady Flow of Traffic

by Percy Whiting, Leonid Minkin, Portland [Oregon] Community College

Optimization Problems

- Appear in many fields.
- Catch students' interest.
- Are underrepresented in introductory texts.

Optimization Problems

- Appear in many fields.
- Catch students' interest.
- Are underrepresented in introductory texts.

Fields: natural science, technology, economics, and management.

Optimization Problems

- Appear in many fields.
- Catch students' interest.
- Are underrepresented in introductory texts.

Fields: natural science, technology, economics, and management.
Interest: especially when it relates to everyday life.

Optimization Problems

- Appear in many fields.
- Catch students' interest.
- Are underrepresented in introductory texts.

Fields: natural science, technology, economics, and management.

Interest: especially when it relates to everyday life.
Introductory: a problem that 1st or 2nd year students can analyze.

The new problem for introductory physics will be: A simplified model of traffic flow optimization.

Flow: $\frac{\text { Number of cars }}{\text { unit of time }}$ passing a given observation point on a road.

Road Capacity: maximum possible safe flow.

The Setup

Single-lane road; identical cars at constant speed; equal spacing; and tire-road friction at $\mu_{\mathrm{s}}=1$.
$\mathrm{v}_{\mathbf{o}}$ (v-naught) because it is before possibly needed braking.
\rightarrow What speed gets maximum safe flow?
\rightarrow What is your intuitive estimate, based on experience?
(Calculation too involved to do in one's head.)

Flow: $\frac{\text { Number of cars }}{\text { unit of time }}$ passing a given observation point on a road.
A fundamental equation for flow rate:
$\mathbf{j}=\mathrm{nv}$ 。 $\mathrm{n} \equiv$ linear density of cars (not just a "number" of cars!).
We use conventional hydrodynamic, electrostatic, and electric current notation.
From the picture:
$n=\frac{1}{s+D}$; combining: $\mathbf{j}=\frac{V_{0}}{S+D}$

Flow: $\frac{\text { Number of cars }}{\text { unit of time }}$ passing a given observation point on a road.
$j=n v_{0} \quad$ since $n=\frac{1}{s+D^{\prime}} \quad j=\frac{v_{0}}{s+D}$

This is what we have so far.

Flow: $\frac{\text { Number of cars }}{\text { unit of time }}$ passing a given observation point on a road.
$j=n v_{0} \quad$ since $n=\frac{1}{s+D^{\prime}}, j=\frac{v_{0}}{s+D}$
How easy is it to significantly increase the flow rate (j)?
Do we increase n ? or do we increase v_{0} ?

Larger n entails smaller D, which requires lower v_{0} for safety; larger v_{o} requires larger D, which means smaller n.

If increase either n or v_{0} then the other one decreases, in $j=n v_{0}$.

Clearly needed: \{total stopping distance, $\mathbf{d}\} \leq\{$ car spacing, D\}.
_- Distance traveled, because while stopping,

d	there is time taken by	while acceleration is
d_{1}	thinking (reaction time)	zero
$d_{\mathbf{2}}$	brake pressure buildup	linearly decreasing (becoming negative)
d_{3}	constant deceleration to $v=0$	constant<0

$d=d_{1}+d_{2}+d_{3}$

The $3 \mathrm{~d}_{i}$'s \rightarrow
and corresponding times \rightarrow

Nice kinematic workout: find times and distances to stop.
Further stimulating student discussion, consider

- cars' state of drivability
- road condition
- drivers' skills.

May need D significantly greater than just d
i.e., (actual car spacing) > (theoretical stopping distance).

Expansion of D shown by: $D=$ const $\cdot($ stopping distance $)=A \cdot d$.
Result: Replace D with actual necessary spacing of cars:

- non-trivial formulas for stopping distance
- margin for safety.

Earlier equation $j=\frac{V_{0}}{S+D}$ has become

$$
j=\frac{v_{0}}{S+A \cdot d} \cdot \leftarrow \text { Note: "d", not "D". }
$$

Now, the theoretical d has turned this equation into:

$$
\begin{aligned}
j= & \frac{v_{0}}{S+\left\{\text { polynomial with terms of } v_{o} \text { and } v_{o}{ }^{2}\right\}} \\
& \quad \text { (the "parking lot case") }
\end{aligned}
$$

$j\left(v_{0}=0\right)=0$ [due to numerator]
$j\left(v_{0} \rightarrow \infty\right)=0$ [due to $v_{0}{ }^{2}$ in denominator]
${ }_{* *}^{*} j$ has a maximum for finite v_{0}.

Optimize $j=\frac{V_{0}}{s+\left\{\text { polynomial with terms of } \mathrm{V}_{\mathrm{o}} \text { and } \mathrm{V}_{0}{ }^{2}\right\}}$ in order to find $v_{0, \text { opt }}$ - and with it,
回 $\left(\mathrm{v}_{\mathrm{o}, \mathrm{opt}}\right) \equiv \mathrm{j}_{\max } \equiv$ capacity (sometimes called \mathbf{q})
回 $\mathrm{n}_{\text {opt }}=j_{\text {max }} / \mathrm{v}_{\mathrm{o}, \text { opt }}=$ optimum car density
$\square \mathrm{d}\left(\mathrm{v}_{\mathrm{o}, \mathrm{opt}}\right)=$ total stopping distance.

Example:

let $s=5 m=$ length of car
$A=1.0$ as in normal intensive traffic
$\mathrm{t}_{\text {reaction }}=0.4 \mathrm{~s}$
$\mathrm{t}_{\text {pres }}=0.3 \mathrm{~s}$ (time for brakes to build pressure),
then $v_{0,0 p t}=(\ldots$ which you estimated earlier ...) 22 mph ,
$\mathrm{n}_{\text {opt }}=104 \mathrm{cars} / \mathrm{mi}$, and
$\mathrm{q}=0.64 \mathrm{~s}^{-1}=1$ car every $1.56 \mathrm{~s}=2,300 \mathrm{cars} / \mathrm{hr}$ is the road capacity.

Experimental Values

> Federal Highway Administration:
> Revised Monograph on Traffic Theory, 2017 (chapter 2, Fig. 2.10)
their data: $\mathbf{q}=2,200 \mathrm{cars} / \mathrm{hr}$ and $\mathrm{v}_{\mathrm{o}, \mathrm{opt}}=24 \mathrm{mph}$ this model: $\mathbf{q}=2,300$ cars $/ \mathrm{hr}$ and $\mathrm{v}_{\mathrm{o}, \mathrm{opt}}=22 \mathrm{mph}$

